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15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M

unknown parameters ak ; k D 0; 1; : : : ; M�1. We use the same approach as in previ-

ous sections, namely to define a �2 merit function and determine best-fit parameters

by its minimization. With nonlinear dependences, however, the minimization must

proceed iteratively. Given trial values for the parameters, we develop a procedure

that improves the trial solution. The procedure is then repeated until �2 stops (or

effectively stops) decreasing.

How is this problem different from the general nonlinear function minimization

problem already dealt with in Chapter 10? Superficially, not at all. Sufficiently close

to the minimum, we expect the �2 function to be well approximated by a quadratic

form, which we can write as

�2.a/ �  � d � aC 1
2
a � D � a (15.5.1)

where d is an M -vector and D is an M �M matrix. (Compare equation 10.8.1.)

If the approximation is a good one, we know how to jump from the current trial

parameters acur to the minimizing ones amin in a single leap, namely

amin D acur C D
�1 �

�

�r�2.acur/
�

(15.5.2)

(Compare equation 10.9.4.)

On the other hand, (15.5.1) might be a poor local approximation to the shape of

the function that we are trying to minimize at acur. In that case, about all we can do

is take a step down the gradient, as in the steepest descent method (÷10.8). In other

words,

anext D acur � constant � r�2.acur/ (15.5.3)

where the constant is small enough not to exhaust the downhill direction.

To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the �2

function at any set of parameters a. To use (15.5.2) we also need the matrix D, which

is the second derivative matrix (Hessian matrix) of the �2 merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no way of

directly evaluating the Hessian matrix. We were given only the ability to evaluate

the function to be minimized and (in some cases) its gradient. Therefore, we had

to resort to iterative methods not just because our function was nonlinear, but also

in order to build up information about the Hessian matrix. Sections 10.9 and 10.8

concerned themselves with two different techniques for building up this information.

Here, life is much simpler. We know exactly the form of �2, since it is based on

a model function that we ourselves have specified. Therefore, the Hessian matrix is

known to us. Thus we are free to use (15.5.2) whenever we care to do so. The only

reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling failure

of (15.5.1) as a good local approximation.
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15.5.1 Calculation of the Gradient and Hessian

The model to be fitted is

y D y.xja/ (15.5.4)

and the �2 merit function is

�2.a/ D

N �1
X

iD0

�

yi � y.xi ja/

�i

�2

(15.5.5)

The gradient of �2 with respect to the parameters a, which will be zero at the �2

minimum, has components

@�2

@ak

D �2

N �1
X

iD0

Œyi � y.xi ja/�

�2
i

@y.xi ja/

@ak

k D 0; 1; : : : ; M � 1 (15.5.6)

Taking an additional partial derivative gives

@2�2

@ak@al

D 2

N �1
X

iD0

1

�2
i

�

@y.xi ja/

@ak

@y.xi ja/

@al

� Œyi � y.xi ja/�
@2y.xi ja/

@al @ak

�

(15.5.7)

It is conventional to remove the factors of 2 by defining

ˇk � �
1

2

@�2

@ak

˛kl �
1

2

@2�2

@ak@al

(15.5.8)

making ˛ D 1
2
D in equation (15.5.2), in terms of which that equation can be rewrit-

ten as the set of linear equations:

M�1
X

lD0

˛kl ıal D ˇk (15.5.9)

This set is solved for the increments ıal that, added to the current approximation,

give the next approximation. In the context of least squares, the matrix ˛, equal to

one-half times the Hessian matrix, is usually called the curvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

ıal D constant � ˇl (15.5.10)

Note that the components ˛kl of the Hessian matrix (15.5.7) depend both on the

first derivatives and on the second derivatives of the basis functions with respect to

their parameters. Some treatments proceed to ignore the second derivative without

comment. We will ignore it also, but only after a few comments.

Second derivatives occur because the gradient (15.5.6) already has a depen-

dence on @y=@ak , and so the next derivative simply must contain terms involving

@2y=@al @ak . The second derivative term can be dismissed when it is zero (as in the

linear case of equation 15.4.8) or small enough to be negligible when compared to

the term involving the first derivative. It also has an additional possibility of being

ignorably small in practice: The term multiplying the second derivative in equation
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(15.5.7) is Œyi � y.xi ja/�. For a successful model, this term should just be the ran-

dom measurement error of each point. This error can have either sign, and should in

general be uncorrelated with the model. Therefore, the second derivative terms tend

to cancel out when summed over i .

Inclusion of the second derivative term can in fact be destabilizing if the model

fits badly or is contaminated by outlier points that are unlikely to be offset by com-

pensating points of opposite sign. From this point on, we will always use as the

definition of ˛kl the formula

˛kl D

N �1
X

iD0

1

�2
i

�

@y.xi ja/

@ak

@y.xi ja/

@al

�

(15.5.11)

This expression more closely resembles its linear cousin (15.4.8). You should under-

stand that minor (or even major) fiddling with ˛ has no effect at all on what final set

of parameters a is reached, but affects only the iterative route that is taken in getting

there. The condition at the �2 minimum, that ˇk D 0 for all k, is independent of

how ˛ is defined.

15.5.2 Levenberg-Marquardt Method

Marquardt [1] put forth an elegant method, related to an earlier suggestion of

Levenberg, for varying smoothly between the extremes of the inverse-Hessian method

(15.5.9) and the steepest descent method (15.5.10). The latter method is used far

from the minimum, switching continuously to the former as the minimum is ap-

proached. This Levenberg-Marquardt method (also called the Marquardt method)

works very well in practice if you can guess plausible starting guesses for your pa-

rameters. It has become a standard nonlinear least-squares routine.

The method is based on two elementary, but important, insights. Consider the

“constant” in equation (15.5.10). What should it be, even in order of magnitude?

What sets its scale? There is no information about the answer in the gradient. That

tells only the slope, not how far that slope extends. Marquardt’s first insight is that

the components of the Hessian matrix, even if they are not usable in any precise

fashion, give some information about the order-of-magnitude scale of the problem.

The quantity �2 is nondimensional, i.e., is a pure number; this is evident from

its definition (15.5.5). On the other hand, ˇk has the dimensions of 1=ak , which

may well be dimensional, i.e., have units like cm�1, or kilowatt-hours, or whatever.

(In fact, each component of ˇk can have different dimensions!) The constant of

proportionality between ˇk and ıak must therefore have the dimensions of a2
k

. Scan

the components of ˛ and you see that there is only one obvious quantity with these

dimensions, and that is 1=˛kk , the reciprocal of the diagonal element. So that must

set the scale of the constant. But that scale might itself be too big. So let’s divide

the constant by some (nondimensional) fudge factor �, with the possibility of setting

�� 1 to cut down the step. In other words, replace equation (15.5.10) by

ıal D
1

�˛l l

ˇl or � ˛l l ıal D ˇl (15.5.12)

It is necessary that ˛l l be positive, but this is guaranteed by definition (15.5.11) —

another reason for adopting that equation.
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Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be com-

bined if we define a new matrix ˛0 by the following prescription:

˛0
jj � j̨j .1C �/

˛0
jk � j̨k .j ¤ k/

(15.5.13)

and then replace both (15.5.12) and (15.5.9) by

M�1
X

lD0

˛0
kl ıal D ˇk (15.5.14)

When � is very large, the matrix ˛0 is forced into being diagonally dominant, so

equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as �

approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parameters a, the recommended Mar-

quardt recipe is as follows:

� Compute �2.a/.

� Pick a modest value for �, say � D 0:001.

� (�) Solve the linear equations (15.5.14) for ıa and evaluate �2.aC ıa/.

� If �2.a C ıa/ ��2.a/, increase � by a factor of 10 (or any other substantial

factor) and go back to (�).

� If �2.aC ıa/ < �2.a/, decrease � by a factor of 10, update the trial solution

a aC ıa, and go back to (�).

Also necessary is a condition for stopping. Iterating to convergence (to machine

accuracy or to the roundoff limit) is generally wasteful and unnecessary since the

minimum is at best only a statistical estimate of the parameters a. As we will see

in ÷15.6, a change in the parameters that changes �2 by an amount � 1 is never

statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering around near

the minimum in a flat valley of complicated topography. The reason is that Mar-

quardt’s method generalizes the method of normal equations (÷15.4); hence it has

the same problem as that method with regard to near-degeneracy of the minimum.

Outright failure by a zero pivot is possible, but unlikely. More often, a small pivot

will generate a large correction that is then rejected, the value of � being then in-

creased. For sufficiently large �, the matrix ˛
0 is positive-definite and can have

no small pivots. Thus the method does tend to stay away from zero pivots, but

at the cost of a tendency to wander around doing steepest descent in very unsteep

degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating

after a few occurrences of �2 decreasing by a negligible amount, say either less than

0:001 absolutely or (in case roundoff prevents that being reached) fractionally. Don’t

stop after a step where �2 increases more than trivially: That only shows that � has

not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set � D 0 and

compute the matrix

C � ˛
�1 (15.5.15)

which, as before, is the estimated covariance matrix of the standard errors in the

fitted parameters a (see next section).
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The following object, Fitmrq, implements Marquardt’s method for nonlinear

parameter estimation. The user interface is intentionally very close to that of Fitlin

in ÷15.4. In particular, the feature of being able to freeze or unfreeze chosen param-

eters is available here, too.

One difference from Fitlin is that you have to supply an initial guess for the

parameters a. Now that is a can of worms! When you are fitting for parameters

that enter highly nonlinearly, there is no reason in the world that the �2 surface

should have only a single minimum. Marquardt’s method embodies no magical in-

sight into finding the global minimum; it’s just a downhill search. Often, it should be

the endgame strategy for fitting parameters, preceded by perhaps cruder, and likely

problem-specific, methods for getting into the right general basin of convergence.

Another difference between Fitmrq and Fitlin is the format of the user-

supplied function funks. Since Fitmrq needs both function and gradient values,

funks is now coded as a void function returning answers through arguments passed

by reference. An example is given below. You call Fitmrq’s constructor once, to

bind your data vectors and function. Then (after any optional calls to hold or free)

you call fit, which sets values for a, chisq, and covar. The curvature matrix

alpha is also available. Note that the original vector of parameter guesses that you

send to the constructor is not modified; rather, the answer is returned in a.

struct Fitmrq { fitmrq.h
Object for nonlinear least-squares fitting by the Levenberg-Marquardt method, also including
the ability to hold specified parameters at fixed, specified values. Call constructor to bind data
vectors and fitting functions and to input an initial parameter guess. Then call any combination
of hold, free, and fit as often as desired. fit sets the output quantities a, covar, alpha,
and chisq.

static const Int NDONE=4, ITMAX=1000; Convergence parameters.
Int ndat, ma, mfit;
VecDoub_I &x,&y,&sig;
Doub tol;
void (*funcs)(const Doub, VecDoub_I &, Doub &, VecDoub_O &);
VecBool ia;
VecDoub a; Output values. a is the vector of fitted coefficients,

covar is its covariance matrix, alpha is the cur-

vature matrix, and chisq is the value of �2 for
the fit.

MatDoub covar;
MatDoub alpha;
Doub chisq;

Fitmrq(VecDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig, VecDoub_I &aa,
void funks(const Doub, VecDoub_I &, Doub &, VecDoub_O &), const Doub
TOL=1.e-3) : ndat(xx.size()), ma(aa.size()), x(xx), y(yy), sig(ssig),
tol(TOL), funcs(funks), ia(ma), alpha(ma,ma), a(aa), covar(ma,ma) {
Constructor. Binds references to the data arrays xx, yy, and ssig, and to a user-supplied
function funks that calculates the nonlinear fitting function and its derivatives. Also inputs
the initial parameters guess aa (which is copied, not modified) and an optional convergence
tolerance TOL. Initializes all parameters as free (not held).

for (Int i=0;i<ma;i++) ia[i] = true;
}

void hold(const Int i, const Doub val) {ia[i]=false; a[i]=val;}
void free(const Int i) {ia[i]=true;}
Optional functions for holding a parameter, identified by a value i in the range 0; : : : ;ma-1,
fixed at the value val, or for freeing a parameter that was previously held fixed. hold and
free may be called for any number of parameters before calling fit to calculate best-fit
values for the remaining (not held) parameters, and the process may be repeated multiple
times.

void fit() {
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Iterate to reduce the �2 of a fit between a set of data points x[0..ndat-1], y[0..ndat-1]
with individual standard deviations sig[0..ndat-1], and a nonlinear function that de-

pends on ma coefficients a[0..ma-1]. When �2 is no longer decreasing, set best-fit val-
ues for the parameters a[0..ma-1], and chisq D �2, covar[0..ma-1][0..ma-1], and
alpha[0..ma-1][0..ma-1]. (Parameters held fixed will return zero covariances.)

Int j,k,l,iter,done=0;
Doub alamda=.001,ochisq;
VecDoub atry(ma),beta(ma),da(ma);
mfit=0;
for (j=0;j<ma;j++) if (ia[j]) mfit++;
MatDoub oneda(mfit,1), temp(mfit,mfit);
mrqcof(a,alpha,beta); Initialization.
for (j=0;j<ma;j++) atry[j]=a[j];
ochisq=chisq;
for (iter=0;iter<ITMAX;iter++) {

if (done==NDONE) alamda=0.; Last pass. Use zero alamda.
for (j=0;j<mfit;j++) { Alter linearized fitting matrix, by augmenting di-

agonal elements.for (k=0;k<mfit;k++) covar[j][k]=alpha[j][k];
covar[j][j]=alpha[j][j]*(1.0+alamda);
for (k=0;k<mfit;k++) temp[j][k]=covar[j][k];
oneda[j][0]=beta[j];

}
gaussj(temp,oneda); Matrix solution.
for (j=0;j<mfit;j++) {

for (k=0;k<mfit;k++) covar[j][k]=temp[j][k];
da[j]=oneda[j][0];

}
if (done==NDONE) { Converged. Clean up and return.

covsrt(covar);
covsrt(alpha);
return;

}
for (j=0,l=0;l<ma;l++) Did the trial succeed?

if (ia[l]) atry[l]=a[l]+da[j++];
mrqcof(atry,covar,da);
if (abs(chisq-ochisq) < MAX(tol,tol*chisq)) done++;
if (chisq < ochisq) { Success, accept the new solution.

alamda *= 0.1;
ochisq=chisq;
for (j=0;j<mfit;j++) {

for (k=0;k<mfit;k++) alpha[j][k]=covar[j][k];
beta[j]=da[j];

}
for (l=0;l<ma;l++) a[l]=atry[l];

} else { Failure, increase alamda.
alamda *= 10.0;
chisq=ochisq;

}
}
throw("Fitmrq too many iterations");

}

void mrqcof(VecDoub_I &a, MatDoub_O &alpha, VecDoub_O &beta) {
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta as in (15.5.8),

and to calculate �2.
Int i,j,k,l,m;
Doub ymod,wt,sig2i,dy;
VecDoub dyda(ma);
for (j=0;j<mfit;j++) { Initialize (symmetric) alpha, beta.

for (k=0;k<=j;k++) alpha[j][k]=0.0;
beta[j]=0.;

}
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chisq=0.;
for (i=0;i<ndat;i++) { Summation loop over all data.

funcs(x[i],a,ymod,dyda);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=0,l=0;l<ma;l++) {

if (ia[l]) {
wt=dyda[l]*sig2i;
for (k=0,m=0;m<l+1;m++)

if (ia[m]) alpha[j][k++] += wt*dyda[m];
beta[j++] += dy*wt;

}
}
chisq += dy*dy*sig2i; And find �2.

}
for (j=1;j<mfit;j++) Fill in the symmetric side.

for (k=0;k<j;k++) alpha[k][j]=alpha[j][k];
}

void covsrt(MatDoub_IO &covar) {
Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

Int i,j,k;
for (i=mfit;i<ma;i++)

for (j=0;j<i+1;j++) covar[i][j]=covar[j][i]=0.0;
k=mfit-1;
for (j=ma-1;j>=0;j--) {

if (ia[j]) {
for (i=0;i<ma;i++) SWAP(covar[i][k],covar[i][j]);
for (i=0;i<ma;i++) SWAP(covar[k][i],covar[j][i]);
k--;

}
}

}

};

15.5.3 Example

The following function fgauss is an example of a user-supplied function funks.

Used with Fitmrq, it fits for the model

y.x/ D

K�1
X

kD0

Bk exp

�

�

�

x � Ek

Gk

�2�

(15.5.16)

which is a sum of K Gaussians, each with a variable position, amplitude, and width.

We store the parameters in the order B0; E0; G0; B1; E1; G1; : : : ; BK�1; EK�1;

GK�1.

void fgauss(const Doub x, VecDoub_I &a, Doub &y, VecDoub_O &dyda) { fit examples.h
y.xI a/ is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a[3k] D Bk , a[3kC1] D Ek , a[3kC2] D
Gk , k D 0; :::; na/3 � 1. The dimensions of the arrays are a[0..na-1], dyda[0..na-1].

Int i,na=a.size();
Doub fac,ex,arg;
y=0.;
for (i=0;i<na-1;i+=3) {

arg=(x-a[i+1])/a[i+2];
ex=exp(-SQR(arg));
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fac=a[i]*ex*2.*arg;
y += a[i]*ex;
dyda[i]=ex;
dyda[i+1]=fac/a[i+2];
dyda[i+2]=fac*arg/a[i+2];

}
}

15.5.4 More Advanced Methods for Nonlinear Least
Squares

You will need more capability than Fitmrq can supply if either (i) it is con-

verging too slowly, or (ii) it is converging to a local minimum that is not the one you

want. Several options are available.

NL2SOL [3] is a highly regarded nonlinear least-squares implementation with

many advanced features. For example, it keeps the second-derivative term we

dropped in the Levenberg-Marquardt method whenever it would be better to do so, a

so-called full Newton-type method.

A different variant on the Levenberg-Marquardt algorithm is to implement it as

a model-trust region method for minimization (see ÷9.7 and ref. [2]) applied to the

special case of a least-squares function. A code of this kind due to Moré [4] can be

found in MINPACK [5].
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